Bat Algorithm

Example:


from bejoor.swarm_based import BatAlgorithm

def func(sol):
    return abs((sol[0]**sol[3] + sol[1]**sol[3] - sol[2]**sol[3]))


solution_vector =  [{"type": "integer", "lower_bound": 1, "upper_bound": 500}] * 3 + \
                   [{"type": "integer", "lower_bound": 2, "upper_bound": 100}] + \
                   [{"type": "float", "lower_bound": 0, "upper_bound": 1}] * 3


# without target objective value
ba= BatAlgorithm(objective_function=func, solution_vector_size=7,
                 solution_vector=solution_vector, optimization_side="min",
                 loudness=0.3, pulse_rate=0.5, min_frequency=0.0, max_frequency=2.0,
                 population_size=30, epochs=50)
ba.run()

print(ba.best_solution)
print(ba.best_objective_value)

Parameters:

  • objective_function: Objective function needs to be optimized.
  • solution_vector_size: Vector size of the candidate solutions.
  • solution_vector: A vector which determines the types of each variable in solution vectors.
  • optimization_side: Determines maximize or minimize the objective function.
  • target_objective_value: Target Objective value.
  • target_objective_lower_bound: Target Objective lower bound.
  • target_objective_upper_bound: Target Objective upper bound.
  • population_size: Number of individuals in the population.
  • epochs: Number of generations to run the algorithm.
  • loudness: The loudness parameter, controlling local search exploitation.
  • pulse_rate: The pulse rate, controlling the probability of a bat performing a local search.
  • min_frequency: Minimum frequency for controlling bat velocities.
  • max_frequency: Maximum frequency for controlling bat velocities.