Memetic Algorithm

Example:


from bejoor.genetic import MemeticAlgorithm

def rosenbrock_function(sol):
    return sum(100 * (sol[i+1] - sol[i]**2)**2 + (sol[i] - 1)**2 for i in range(len(sol) - 1))

solution_vector = [{"type": "float", "lower_bound": -5, "upper_bound": 10}] * 7

memtic = MemeticAlgorithm(objective_function=rosenbrock_function, solution_vector_size=7,
                           solution_vector=solution_vector, optimization_side="min",
                           local_search_iterations=10, population_size=300, epochs=50)
memtic.run()

print(f'Best Global Objective Value: {memtic.global_best_objective_value}')
print(f'Best Global Solution: {memtic.global_best_solution}')

Parameters:

  • objective_function: Objective function needs to be optimized.
  • solution_vector_size: Vector size of the candidate solutions.
  • solution_vector: A vector which determines the types of each variable in solution vectors.
  • optimization_side: Determines maximize or minimize the objective function.
  • target_objective_value: Target Objective value.
  • target_objective_lower_bound: Target Objective lower bound.
  • target_objective_upper_bound: Target Objective upper bound.
  • population_size: Number of individuals in the population.
  • epochs: Number of generations to run the algorithm.
  • local_search_iterations: Number of local search iterations to improve each solution.

BibTeX citation to the algorithm


@article{moscato1989evolution,
  title={On evolution, search, optimization, genetic algorithms and martial arts: Towards memetic algorithms},
  author={Moscato, Pablo and others},
  journal={Caltech concurrent computation program, C3P Report},
  volume={826},
  number={1989},
  pages={37},
  year={1989}
}

More useful resources about the algorithm: